Irisin and Fibronectin Type III Domain-Containing 5 Responses to Exercise in Different Environmental Conditions
نویسندگان
چکیده
Fibronectin type III domain-containing 5 (FNDC5) is a skeletal muscle membrane-bound precursor to the myokine irisin. Irisin is involved in stimulating adipose tissue to become more metabolically active in order to produce heat. The purpose of this study was to determine the effects of exercise in a hot (33 °C), cold (7 °C), and room temperature (RT, 20 °C) environment on the skeletal muscle gene expression of FNDC5 and the plasma concentrations of irisin. Twelve recreationally trained males completed three separate, 1 h cycling bouts at 60% of Wmax in a hot, cold, and RT environment followed by three hours of recovery at room temperature. Blood samples were taken from the antecubital vein and muscle biopsies were taken from the vastus lateralis pre-, post-, and 3 h post-exercise. Plasma concentrations of irisin did not change from pre- (9.23 ± 2.68 pg·mL-1) to post-exercise (9.6 ± 0.2 pg·mL-1, p = 0.068), but did decrease from post-exercise to 3 h post-exercise (8.9 ± 0.5 pg·mL-1, p = 0.047) regardless of temperature. However, when plasma volume shifts were considered, no differences were found in irisin (p = 0.086). There were no significant differences between trials for irisin plasma concentrations (p > 0.05). No significant differences in FNDC5 were observed between the hot, cold, or RT or pre-, post-, or 3 h post-exercise time points (p > 0.05). These data indicate that the temperature in which exercise takes place does not influence FNDC5 transcription or circulating irisin in a human model.
منابع مشابه
Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملThe structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation.
Irisin was recently identified as a putative myokine that is induced by exercise. Studies suggest that it is produced by cleavage of the FNDC5 (fibronectin domain-containing protein 5) receptor; irisin corresponds to the extracellular receptor ectodomain. Data suggesting that irisin stimulates white-to-brown fat conversion have led to the hypothesis that it does so by binding an unknown recepto...
متن کاملIrisin and FNDC5 in retrospect An exercise hormone or a transmembrane receptor?
FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. ...
متن کاملMuscle irisin response to aerobic vs HIIT in overweight female adolescents
Background Exercise stimulates the production of fibronectin type III domain-containing protein 5 (FNDC5), which is cleaved to release a protein called irisin. This protein induces browning of white adipose tissue resulting in increased thermogenesis. Different studies have measured circulating irisin at baseline and in response to exercise among a wide variety of individuals; yet, regarding th...
متن کاملIrisin and FNDC5 in retrospect
FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. ...
متن کامل